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ABSTRACT
We propose UnLoc, an unsupervised indoor localization scheme
that bypasses the need for war-driving. Our key observation is
that certain locations in an indoor environment present iden-
tifiable signatures on one or more sensing dimensions. An
elevator, for instance, imposes a distinct pattern on a smart-
phone’s accelerometer; a corridor-corner may overhear a unique
set of WiFi access points; a specific spot may experience an
unusual magnetic fluctuation. We hypothesize that these kind
of signatures naturally exist in the environment, and can be
envisioned as internal landmarks of a building. Mobile de-
vices that “sense” these landmarks can recalibrate their loca-
tions, while dead-reckoning schemes can track them between
landmarks. Results from 3 different indoor settings, includ-
ing a shopping mall, demonstrate median location errors of
1.69m. War-driving is not necessary, neither are floorplans
– the system simultaneously computes the locations of users
and landmarks, in a manner that they converge reasonably
quickly. We believe this is an unconventional approach to
indoor localization, holding promise for real-world deploy-
ment.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software; C.2.4 [Computer-Comunication Networks]: Dis-
tributed Systems

Keywords
Location, Mobile phones, Sensing, Landmarks, Recursion

1. INTRODUCTION
Despite innovative research [1–9,9–16], indoor localization is
still not in the mainstream. In trying to trace the reasons, we
distilled two main messages: (1) Indoor spaces require fairly
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high location accuracy because the contexts vary at finer spa-
tial granularity. For instance, 5m location error outdoors may
still indicate the same street, but 5m indoors may mean two
different aisles in a grocery store. An inventory-management
application may very well require aisle-level precision. (2) While
such precision is attainable with pervasive WiFi systems, they
come at a prohibitively high cost, mostly in the form of metic-
ulous (signal) calibration. Such calibration is not necessarily a
one-time cost since RF fingerprints could change, perhaps due
to changes in layout and objects in the environment. Attempts
to simplify the calibration process have been successful, but at
the expense of reduced location accuracy. This zero sum game
between accuracy and calibration overhead has been an im-
portant hurdle to deploying indoor localization systems. This
paper is tasked to break away from this tradeoff, and achieve
meter level accuracy with zero calibration. Although a high
bar, we believe this is feasible and make an attempt to do so.

Our scheme cuts across isolated ideas in mobile computing.
We introduce these ideas first, and then describe the value in
making them compatible.

(1) A few recent schemes have demonstrated the ability to
compute the motion trajectory of a mobile phone, using its
accelerometer and compasses [2, 17]. This has been called
urban dead-reckoning. Due to noise in the mobile sensors,
the dead-reckoned trajectories are accurate in the beginning,
but diverge from the truth over time. Therefore, outdoor lo-
calization schemes like CompAcc [2] have triggered periodic
GPS measurements to recalibrate the user’s location. Unfor-
tunately, GPS is unreliable indoors, rendering dead-reckoning
based approaches useless. Nonetheless, if one can identify
other means of recalibration, dead-reckoning could be appli-
cable even indoors.

(2) Urban sensing and activity recognition literature have demon-
strated the ability to recognize ambiences and user behav-
ior. For instance, inertial sensors can detect when a user is
walking, turning into a corridor, or climbing up the stairs
[18]; microphones and magnetometers can detect ambient
sounds and magnetic fluctuations [14, 19]. While these sig-
natures have been primarily used for various forms of context-
awareness, they lend themselves to localization as well. For
example, these signatures can be treated as “landmarks”, use-
ful to recalibrate indoor dead-reckoning.

(3) Past work has mostly relied on signal calibration [1,3] to
develop WiFi based localization. We observe that WiFi can be
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valuable even without calibration. For instance, one can use
overheard WiFi APs to partition an indoor space into smaller
sub-spaces. Thus, a landmark signature need not be unique
in the entire building – so long as it is unique within a WiFi
sub-space, it can be recognized without ambiguity.

UnLoc combines these 3 ideas (dead-reckoning, urban sens-
ing, and WiFi-based partitioning) into a framework for unsu-
pervised localization. The core idea is recursive but not com-
plicated. Briefly, mobile users move naturally in the build-
ing collecting accelerometer, compass, gyroscope, and WiFi
readings. By assimilating data from these devices, UnLoc de-
tects sensory signatures (e.g., a corridor turn) that are unique
within their respective WiFi sub-spaces. Now using the same
collected data, UnLoc dead-reckons the devices starting from
a known reference location, say the entrance of the building.
Since dead-reckoning provides a rough location to the phone,
it is also possible to roughly localize the signatures based on
when the phone senses them.

Now, the locations of these signatures – also called landmarks
– can be made more accurate by combining the rough esti-
mates from multiple phones. These landmarks can then be
used to improve dead-reckoning of subsequent phones, which
in turn can refine the landmark locations. This recursive pro-
cess continues to improve localization accuracy over time.
Observe that, the system does not need calibration – the first
few users may experience inferior location accuracy, but a lit-
tle more data brings the system to convergence.

Of course, translating this idea-sketch into a functional sys-
tem entails a variety of challenges: (1) Dead-reckoning is
non-trivial in indoor environments where metals and electri-
cal equipment significantly affect the compass bearing1. (2)
Extracting the accurate location of the landmarks from mul-
tiple erroneous locations is problematic, since the errors may
not be all equal. Some notion of confidence on the errors need
to be built, so that the estimates can be suitably weighted be-
fore combination. (3) Identifying landmark signatures from
the sensed data warrants unsupervised learning on sensor fea-
tures. (4) Finally, the system needs to be optimized for energy,
to avoid a significant battery drain during localization. This
paper addresses these challenges one step at a time, proto-
types on a testbed of Android Nexus series phones, and evalu-
ates with 3 volunteers naturally walking in 2 university build-
ings and 1 shopping mall. Performance results show median
localization accuracy of 1.69m when UnLoc runs online, and
0.89m when the locations are computed offline. The system
quickly reaches convergence in less than 2 man-hours, and
remains robust to dynamic changes in the environment. We
believe this could be a promising direction, and with rigorous
testing and tuning, a potential candidate for the real-world.

Our main contributions may be summarized as follows:

• We identify an opportunity to simultaneously harness
sensor-based dead-reckoning and environment sensing
for localization. Our approach does not require calibration
or installation of additional infrastructure.

• We design a practical scheme that employs unsuper-
vised learning to extract unique sensor signatures – called
landmarks. We show that adequate landmarks exist inside

1Prior work demonstrated dead-reckoning mostly for outdoor
environments.

buildings such that dead-reckoning is practical and reason-
ably accurate.

• We develop UnLoc on the Android OS, and evaluate
across 3 different indoor spaces, including the North
Gate shopping mall in Durham. We achieved less than
2m error without any pre-deployment effort; in fact, we
used the map of the building only to compute ground truth
for evaluation.

The subsequent sections expand on each of these contribu-
tions, beginning with architectural overview and intuition,
followed by measurement, design, and evaluation.

2. ARCHITECTURE AND INTUITION
We begin with a high level overview of UnLoc, focussing mainly
on the core building blocks and intuitions (Figure 1). We will
postpone the discussion on actual algorithms and engineering
details to the next section. In fact, we will even make a sim-
plifying assumption that the building floorplan is available to
UnLoc.

Of course, this assumption need not hold in our final system
– its sole purpose is ease of explanation. Once we have devel-
oped the core framework, we will discuss how the assumption
can be relaxed.

Human Motion Traces
Consider the example where we intend to localize users in a
shopping mall. When users visit the mall, the UnLoc app run-
ning on their smartphones collect time-stamped sensor read-
ings. These readings (mainly from accelerometer, compass,
gyroscope, and WiFi APs2) are assimilated in a central repos-
itory. UnLoc must operate on this data to track each user’s
location. For now, we perform this offline.

Seed Landmarks (SLMs)
As a first step, UnLoc looks into the floorplan of the building
and identifies some “seed landmarks”. These seed landmarks
are essentially certain structures in the building – stairs, eleva-
tors, entrances, escalators – that force users to behave in pre-
dictable ways. These predictable behaviors can be translated
to sensor signatures. For instance, building entrances are
characterized by a visible drop in the GPS confidence when
the user moves from outdoors to indoors; elevators exhibit a
distinct accelerometer signature, emerging from the start and
stop of the elevator. If a user, Alice, used the elevator in the
mall, UnLoc expects her trace to contain the elevator signa-
ture embedded in it. Let us assume that this signature occurs
in Alice’s trace at time ti. Since the location of the elevator is
known within the floorplan, UnLoc can precisely localize Alice
at ti. In similar ways, Alice can be precisely localized at other
time-points when she passed through any of the other land-
marks. The next step, then, is to localize her while she moved
between these landmarks – for this, UnLoc adopts techniques
from urban dead-reckoning.

Dead Reckoning
Urban dead-reckoning [2] is an established idea that uses
the accelerometer and the compass to track a mobile user.

2Sound and light measurements could also be useful, but we
do not activate them for energy-efficiency.
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Figure 1: UnLoc architecture – motion vectors are computed from recorded sensor readings, and the user’s location
computed via dead-reckoning. The dead-reckoning error is periodically reset using landmarks in the environment. Fur-
ther, the same sensor readings are mined to identify signatures of new landmarks. These landmarks help in improving
localization accuracy for subsequent users.

The key idea is simple. Based on the accelerometer read-
ings of the mobile phone, it is possible to count the num-
ber of steps a person has walked, and therefrom derive the
displacement of the person. Based on the compass, the direc-
tion of each of these steps can be tracked3. Merging these,
the <displacement, direction, time> tuple forms the human’s
motion vector. Pivoting these vectors at the seed landmarks,
UnLoc tracks the location of Alice. Although the tracking op-
eration is crude (because the noisy sensors accumulate error
over time), the error gets reset whenever Alice crosses any
of the landmarks. Thus, in the steady state, Alice’s localiza-
tion error exhibits a saw-tooth behavior – over time, the lo-
calization error grows and then sharply drops to zero at the
landmark, and then grows again. Observe that increasing the
density of landmarks will cause the error to reset frequently,
thereby curbing the error growth. UnLoc will attempt to ac-
complish this by organically extracting additional landmarks
from the indoor environment

Organic Landmarks (OLMs)
In addition to seed landmarks, UnLoc postulates that any in-
door environment will offer some ambient signatures across
one or many sensing dimensions. These signatures can be
in the magnetic domain, wherein metals in a specific loca-
tion may produce unique and reproducible fluctuations on
the user’s magnetometer, near that location. Signatures could
also be WiFi-based – a spot may overhear a set of WiFi base
stations, but the set may change at short distances away from
that spot. A few (dead) spots inside a building may not over-
hear any WiFi or GSM/3G signals, which by itself is a sig-
nature. Further, even a water-fountain could be a signature
– users that stop to drink water may exhibit some common
patterns on the accelerometer and magnetometer domains.

3However, as we will find in the next section, magnetic fluc-
tuations in the environment will derail the compass readings,
forcing us to shift to gyroscopes.

Whenever these pattern surface on Alice’s trace, it could be
an opportunity to recognize her location. Of course, even
though these signatures can become useful landmarks, they
cannot be known a priori, and will vary across different build-
ings. They have to be learnt dynamically.

Towards learning these landmarks, UnLoc subjects the sen-
sor data (gathered from all phones) to a clustering algorithm
(Figure 1). Actually, various features of this data are extracted
and the clustering runs on this high dimensional space – de-
tailed in the next section. Once the clustering operation has
completed, each of the resulting clusters is expected to con-
tain similar sensor patterns. Now, since each sensor read-
ing is associated with time-stamps, it is possible to find their
corresponding locations via dead-reckoning. UnLoc computes
these locations to check whether all members of a cluster fall
within a small area – Figure 2. If they do, then UnLoc deems it
a new landmark. Since these landmarks were discovered au-
tomatically, without any external supervision, we call them
organic landmarks (OLMs). If no OLMs are found, UnLoc
waits for more traces and continues scanning for OLMs.

Simultaneous Localization and Mapping
Both SLMs and newly discovered OLMs are used to improve
dead-reckoning for subsequent users, which in turn improves
the location estimates of the SLMs/OLMs themselves. This
circular process pushes the entire system to better accuracy
and UnLoc continues to improve over time. The evaluation
section will quantify this behavior, for different users and build-
ings.

2.1 Intuitions and Supporting Measurements
The success of UnLoc hinges on at least 3 performance-related
expectations: (1) Dead reckoning can attain desired levels of
accuracy, if periodically recalibrated by landmarks. (2) In-
door environments indeed offer the requisite number of land-
marks. (3) The locations of the landmarks can be computed
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Figure 2: Matrix showing sensor readings collected by devices across time. Readings are clustered and location of cluster
members computed. If all cluster members fall within a small region, UnLoc deems it an OLM.

from rough estimates of multiple devices (i.e., the dead-reckoning
errors are indeed independent). We discuss our intuitions in
each of these, and present supporting measurements.

(1) Dead-Reckoning Accuracy
We performed some initial experiments in the computer en-
gineering building at Duke University. Volunteers were asked
to carry NexusS phones in their pockets, and walk naturally
in one wing of the building. The UnLoc app running on the
phones records the accelerometer and compass readings, and
extracts from them the <displacement, direction, time> tu-
ples. To record ground truth, we marked different doors and
windows in the buildings with a distinct number4 – when a
user passed by that number, she entered it into her phone.
Since we know the mapping between the number and the
door/window, we are able to extract the ground truth (al-
most accurately). We gathered 10 traces, each starting from
the entrance of the building. We performed trace-based anal-
ysis to understand how the dead-reckoned path diverges from
the true path, with varying number of landmarks.

Figure 3 shows the accumulated error over time (light gray
curve) when using pure dead-reckoning with zero landmarks.
Evidently, the error accumulates dramatically fast, and is com-
pletely unusable. Hence, we simulate landmarks by period-
ically reseting the user’s location to the correct location –
the black curve shows the results. While the performance
improves, the mean localization error is still 11.7m, greater
than our target. On analyzing the data, we observed that the
magnetic field in indoor environments is heavily distorted by
metallic and electrical equipments in the (engineering) build-
ing. Thus, although these magnetic fluctuations are beneficial
for finding landmarks, they derail dead-reckoning by inject-
ing heavy error in the compass. UnLoc appeared impractical
at this point.

Fortunately, newer smartphones are embedded with gyroscopes
that measure the angular velocity of the phone in 3 dimen-
sions and are not affected by the magnetic field. We care-
fully processed the gyroscope readings to compute the angu-
lar changes during walking, i.e., how the user turned. How-
ever, gyroscope readings are relative and we needed to com-
bine it opportunistically with the compass to estimate the
user’s absolute walking direction. We will report several tech-
nical challenges of this operation in section 3, including com-

4Recall that GPS is unavailable indoors.
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Figure 3: Error from dead-reckoning reduces with gyro-
scope, and further with landmarks.

pass offsets and gyroscope drifts. However, once we har-
nessed the gyroscope and the compass in tandem, the dead-
reckoning error reduced appreciably (blue curve in Figure 3).
When re-calibrated by periodic landmarks, the average error
dropped further to 1.2m, offering us confidence to build a
fuller system.

In addition, once a landmark is encountered, the user’s path
can be retraced and corrected between the last two land-
marks. Although this does not help in realtime tracking of
the user, it helps in offline analysis, and more importantly, for
improving the location estimate of organic landmarks.

(2) Landmark Density
It is natural to question why indoor environments would ex-
hibit sensor signatures to be used as landmarks? While there
is of course no guarantee, our observation is that an indoor
environment is rich with ambient signals, like sound, light,
magnetic field, temperature, WiFi, 3G, etc. Moreover, dif-
ferent building structures (e.g., stairs, doors, elevators) force
humans to behave in specific ways. If one “combs” through
all these sensor signals and their high-dimensional combina-
tions, we postulate that some signatures are likely to emerge.
The intuition is essentially rooted in diversity, i.e., the chances
that all of the signals are similar and no pattern “shows up as
different”, seems unlikely. Further, these signatures need not
be unique in the entire building – so long as they are unique
within the WiFi sub-space, they can be valid landmarks. We
performed a small scale measurement study to verify this in-
tuition – the results follow.
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• WiFi Landmarks:
Consider an area within which all locations overhear a dis-
tinct set of WiFi APs. An indoor space is likely to have many
such areas of varying sizes. Figure 4 shows the distribution
of the sizes of these areas. While most of the areas are quite
large – explaining why simple WiFi based localization is not
very accurate – there are a few areas (at the left side of the
X axis) that are very small. UnLoc aims to exploit these small
areas as a landmark. If one of this small areas overhears a set
of WiFi APs, denoted W , then a mobile phone overhearing the
same set can be assumed to be within that area. Since the area
is small, the localization error of the phone will be small too,
enabling a location recalibration. Our measurements show
that in two floors of the engineering building, we find 8 and 5
such WiFi landmarks, each of area less than 4m2. Thus WiFi
APs can offer landmarks to enhance dead-reckoning.
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Figure 4: Some WiFi areas are very small (tail of distri-
bution), and hence, an ideal landmark.

• Magnetic/Accelerometer Landmarks:
In search of signatures in other sensing domains, we exe-
cuted K-means clustering on accelerometer and compass mea-
surements (we present the algorithm and parameter details
later). For each cluster, we mapped their members to their
corresponding physical locations (using ground truth). For
most clusters, we found that their member-locations were
widely scattered in space, and hence, were unusable as a
landmark. However, members of a few clusters proved to be
tightly collocated in space as well. For example, we discov-
ered a unique/stable magnetic fluctuation near our network-
ing lab. We found another spot with a distinct accelerometer
signature – a pair of symmetric bumps in opposite directions
(Figure 5).
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Figure 5: Accelerometer signature inside the elevator
(caused by the elevator starting and stopping).
Although UnLoc need not understand the semantic meaning
of these signatures, out of curiosity we analyzed the data,
and discovered that they were caused by the elevator starting

and stopping. In fact, the direction of the bumps (upward
or downward) even indicated whether the user went upstairs
or downstairs. These spatially collocated patterns were nat-
ural landmarks, and when we assimilated all sensing dimen-
sions, the number of landmarks proved to be 6 and 8 for each
floor. In fact, when we combined accelerometer and com-
pass together – a higher dimensional signature – we found
even more landmarks due to turns in the building. In sum,
the organic and seed landmarks together seemed to offer the
needed density to support indoor dead reckoning.

(3) Computing Landmark Locations
Perhaps an important pitfall in UnLoc lies in computing the
locations of the landmarks. Figure 6(a) is intended to ex-
plain the problem. In this example, assume that UnLoc has
combined the user’s sensor data, clustered on them, and dis-
covered 3 sensor signatures (in distinct WiFi areas), that can
be used as landmarks. Now the locations of these landmarks
need to be computed, but there is no ground truth to learn
that. One way to estimate the location of a landmark is to
use dead-reckoning, but that will not be accurate since dead-
reckoning itself is erroneous. Our approach is to compute
the landmark location by combining all the (dead-reckoned)
estimates of a given landmark. The intuition is that dead-
reckoning errors have been observed to be random and in-
dependent, due to the noise in hardware sensors and human
step sizes [2]. By combining these errors from adequate mea-
surements, one could expect the estimated mean to converge
to the actual landmark location. Figure 6(b) illustrates the
opportunity through a simple centroid calculation.

Figure 8 visualizes data from real measurements to verify in-
dependence in dead-reckoning error – each line joins the esti-
mated landmark location to the actual location. Visually, the
errors appear uncorrelated. Of course, this is a preliminary
overview of the inner workings of the system – we later dis-
cuss the algorithmic details of this error combining process,
and measure performance in greater detail.
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Figure 8: Uncorrelated errors from multiple dead-
reckoning estimates.

3. DESIGN DETAILS
This section describes the algorithms and engineering details
underlying UnLoc.

3.1 Seed Landmarks
If the building’s floorplan is known (which is often necessary
to visualize the user’s location), then UnLoc can infer the lo-
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Figure 6: (a) UnLoc users walk and periodically encounter landmarks – refines landmark locations, corrects own location.
(b) The solid circle showing the centroid of the dead-reckoned estimates. Multiple erroneous estimates leading to a better
approximation of the landmark location.

Figure 7: Decision tree for detecting Seed LandMarks (SLMs). The top level separates the elevator based on its unique
acceleration pattern. The second level separates the constant velocity classes (stairs and escalator) from the other two
classes (walking and stairs) based on the variance of the acceleration. The third level uses the variance of magnetic field
to separate the escalator from the stationary case and the correlation between the Z and Y acceleration components to
separate between the stairs and walking cases.

cations of doors, elevators, staircases, escalators, etc. This
implies that the location of seed landmarks (SLMs) are imme-
diately known. As long as the smartphone can detect these
SLMs while passing through them, it can recalibrate its loca-
tion. Thus, the goal of the SLM detection module is to define
sensor patterns that are global across all buildings.

Elevators, Staircases, and Escalators
This class of SLMs are based on using the inertial sensors.
These sensors have the advantage of being ubiquitously in-
stalled on a large class of smart phones, having a low-energy
footprint, and being always on during the phone operation
(to detect the change of screen orientation). We focus on
three particular examples that are common in indoor envi-
ronments: elevators, escalators, and stairs. Figure 7 shows
a classification tree for detecting the three classes of interest
and separating them from walking and being stationary. We
note that a false positive leads to errors in estimating the lo-
cation of the SLM while a false negative leads to missing an
opportunity for recalibration. Therefore, high detection accu-
racy with low false positive/negative rates are highly desired.

Elevator: A typical elevator usage trace consists of normal

walking period, followed by waiting for the elevator for some-
time, walking into the elevator, standing inside for a short
time, an over-weight/weightloss occurs (depending on the
direction of the elevator), then a stationary period which de-
pends on the number of the floors the elevator moved, an-
other weight-loss/over-weight, and finally a walk-out. To rec-
ognize the elevator motion pattern, we developed a Finite
State Machine (FSM) that depends on the observed state tran-
sitions. Different thresholds are used to move between the
states. Evaluation over 22 traces show that the thresholds are
robust to changes in the environment and can achieve 0.6%
and 0% false positive and negative rates, respectively.

Escalator: Once the elevator has been separated, it is easy to
separate the classes with constant velocity (escalator and sta-
tionary) from the other classes (walking and stairs) using the
variance of acceleration. Now, to separate the escalator from
stationarity, we found that the variance of the magnetic field
can be a reliable discriminator. Of course, a user may some-
times climb up the escalator – we find that magnetic variance
also differentiates between this and an actual staircase-climb
(see Figure 9).

Stairs: Once the scenario with constant speed is separated,
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Figure 9: Magnetic variance when a user is climbing stairs
versus escalator.

we need to differentiate between the stair and walking case.
The main observation here is that when the user is using the
stairs, her speed increases or decreases based on whether the
gravity is helping her or not. This creates a higher correlation
between the acceleration in the direction of motion and di-
rection of gravity as compared to walking. As reported later,
staircases can sometimes lead to false negatives (1.8%).

3.2 Dead Reckoning
The two sub-tasks in dead reckoning are (1) computing the
user’s displacement from accelerometer and (2) continuously
tracking the direction of movement.

Displacement from accelerometer:
One possible solution is to double-integrate the accelerome-
ter readings. Figure 10(b) shows the unacceptable results –
the difference between the estimated and actual displacement
reaches more than 100m only after 30m of actual displace-
ment. This is an attribute of a noisy accelerometer, low sam-
pling rate (24Hz), as well as jerky movements of the phone
when carried by the user. A better approach [2,20] is to iden-
tify a human-walking signature as in Figure 10(a). This sig-
nature arises from the natural up/down bounce of the human
body for each step taken. To capture this, we pass the signal
through a low pass filter, and identify two consecutive local
minima. Between these local minima, we search for a local
maxima, and check whether the difference between the max-
ima and minima is greater than a threshold. If so, we incre-
ment the step count.

The physical displacement can be computed by multiplying
step count with the user’s step size, a function of the user’s
weight and height [21]5. Employing a fixed step size across
all users can clearly be erroneous. However, UnLoc has the
opportunity to infer the step size by counting the number
of steps for a known displacement (i.e., between two land-
marks). Figure 10(c) shows the error accumulated by UnLoc
using these techniques in place – the results are encourag-
ing. The step count accuracy (verified with 10 users) was
also 98%.

Orientation using compass/gyroscope:
Past work has demonstrated the feasibility of dead-reckoning
using the smartphone compass. However, to the best of our
knowledge, all these results are for outdoor environments. In-
doors, the magnetic field due to ferromagnetic material and
electrical objects in the vicinity, completely derailed our dead

5A more accurate approach is to estimate the user step size
based on her gait [22].
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Figure 10: (a) Accelerometer readings (smoothened)
from a walking user. (b) Displacement error with dou-
ble integration for two users. (c) Error with step count
method.

reckoning attempts6. In response to this, we explored the fea-
sibility of using gyroscope to infer the user’s movement direc-
tions. Our intuition was that the gyroscope is decoupled from
the magnetometer sensor, and hence, could be insensitive to
ambient magnetic fields.

While this insensitivity proved true, i.e., the gyroscope indeed
remained unaffected by changing magnetic fields, the trade-
off was that the gyroscope offered relative angular velocity.
This is in the form of a 3D rotation matrix which when mul-
tiplied by a time interval, yields the relative angular displace-
ment (RAD) of the device. Unfortunately, the RAD is with
respect to a direction that is not necessarily the absolute di-
rection. Thus, while we could track the structure of the user’s
motion path using the gyroscope, these paths were biased by
the error in their initial direction. Thus all the estimated paths
appeared as rotated versions of the true path, shown in Fig-
ure 11(a).

We observe that encountering landmarks can help infer this
bias. Figure 11(b) explains the opportunity. Consider a user
encountering a known landmark L1 at time t1, and later an-
other landmark L2 at time t2. UnLoc identifies that the user
encountered these two landmarks because the signatures matched,
and hence, regardless of the dead-reckoned estimates, UnLoc
“pins down” the user’s path at these locations. Now, let θ de-
note the angle between the line joining L1, L2 and the line
joining L1, X2, where X2 is the dead-reckoned estimate at
time t2. We observe that θ is the initial bias, and therefore,
UnLoc rotates the entire motion segment by θ. Importantly,
the same θ can be used to track the user for the subsequent
motion segment – say until the user encounters landmark L3

– at which point the bias can again be updated. This process
of learning and updating the bias at every landmark leads to
stable and consistent results. The only remaining problem
lies in tracking the user until she has encountered the second

6We attempted at least 5 different techniques to learn and
correct for these fluctuations.
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Figure 11: (a) Rotated walking trail due to gyroscope’s
initial bias. (b) Correcting gyroscope’s bias using land-
marks.

landmark – during this phase, her dead reckoning error can
be arbitrarily high.

UnLoc turns to the compass during the initial phase when the
gyroscope bias is still unknown. Clearly, the compass value
cannot be used blindly – ambient magnetic field fluctuations
can actually degrade the results. Thus, UnLoc juxtaposes the
gyroscope and compass readings – Figure 12(a) – and when-
ever the trends are correlated, the compass value is selected
as the direction of motion. The gyroscope’s bias is now in-
ferred, and used thereafter. The intuition here is that cor-
related trends in compass and gyroscope is an indicator of
proper compass readings; and if the compass is not reflecting
the gyroscope’s trend, it is probably affected by other factors.
Figure 12(b) shows the eventual outcomes in angular direc-
tion estimation. The compass helps with the initial phase,
while gyroscope based dead reckoning proves to be effective.
In fact, to the best of our knowledge, UnLoc is the first to
leverage smartphone gyroscopes for indoor dead reckoning.

3.3 Organic Landmarks
The task of discovering organic landmarks (OLMs) is rooted
in (1) recognizing distinct patterns from many sensed signals,
(2) and testing whether a given pattern is spatially confined
to a small area. Recall that Figure 2 illustrates the flow of
operations. All the sensor readings are gathered in a matrix:
element <i,j> of the matrix contains sensor readings from
phone i at time j. These sensor readings are essentially fea-
tures of the raw sensed values (from the accelerometer, com-
pass, gyroscope, magnetometer, and WiFi). Features for the
magnetic and inertial sensors include mean, max, min, vari-
ance, mean-crossings, while for WiFi, they are MAC ID, RSSI.

UnLoc normalizes these features between [−1, 1] and feeds
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Figure 12: (a) Compass orientation is more reliable when
it is correlated with the gyroscope. (b) CDF of orientation
estimation error.

them to a K − means clustering algorithm. (we tested with
Expectation Maximization (EM) clustering as well, but it was
not consistently better than K-means). The clustering is exe-
cuted for each individual sensing dimensions, as well as their
combinations (such as accelerometer and compass together).
Figure 13, for example, shows the clusters from the magne-
tometer readings for K = 3. We varied the value of K and
recorded the clusters in each case. Our goal is to identify
clusters that have low similarity with all other clusters; this
will suggest a good signature. For this, we compute the cor-
relation between a given cluster and all other clusters – if the
maximum correlation is less than a similarity threshold, we
consider this cluster as a candidate for landmark.
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Figure 13: Clusters identified by kmeans algorithm

To qualify as an OLM, the candidate cluster must also be con-
fined to a small geographical area. For this, we first test
whether the members of a cluster are within the same WiFi
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area (i.e., they overhear the same WiFi APs). While this is nec-
essary, it is not sufficient because many WiFi areas are large.
Therefore, for clusters within a WiFi area, we compute the
dead-reckoned locations for each of their members. If loca-
tions of all cluster-members are indeed within a small area
– we use 4m2 – then we recruit this cluster as an OLM. As
an anecdote, we found that using accelerometer, one of the
sensor clusters were scattered all over the indoor space; upon
investigation, we detected that this cluster roughly captured
walking patterns. On the other hand, another cluster that
proved to be within the 4m2 area was from a magnetic sig-
nature near an electrical service room in the building. UnLoc
announces the centroid of the cluster as the OLM’s location.

While the above describes the generalized version of the OLM
detection algorithm, the different sensing dimensions require
some customization, discussed next.

3.3.1 WiFi Landmarks
We use MAC addresses of WiFi APs and their corresponding
RSSI values as features. To remain robust to signal variations
(which alters the set of overheard APs), we only consider
APs that are stronger than a threshold RSSI. Now, applying
K-means clustering, we identify small areas (4m2) that have
low similarity with all locations outside that area. We com-
pute similarity of two locations, l1 and l2, as follows. Let us
denote the sets of WiFi APs overheard at locations l1 and l2 as
A1 and A2, respectively. Also, let A = A1UA2. Let fi(a) de-
note the RSSI of AP a, a ∈ A, overheard at location li; if a is
not overheard at li, then fi(a) = 0. We now define similarity
S ∈ [0, 1], between locations l1 and l2 as:

S =
1

|A|
∑

∀a∈A

min(f1(a), f2(a))

max(f1(a), f2(a))

The rationale for this equation is to add proportionally large
weights to S when an AP’s signals are similarly strong at both
locations, and vice versa. We threshold on S to define a WiFi
landmark. We choose a threshold of 0.4 in our system, indi-
cating that all locations within the WiFi landmark needs to
exhibit less than 0.4 similarity with any other location outside
the landmark. Of course, this rather strict threshold ensures
that landmarks are quite distinct, but also reduces the num-
ber of possible landmarks. Figure 14 shows this tradeoff us-
ing traces from two Duke University buildings. We observed
that 0.4 was a reasonable cut-off point, balancing quality and
quantity of WiFi OLMs.
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Figure 14: Tradeoff between similarity threshold and
number of WiFi landmarks.

3.3.2 Magnetic and Inertial Sensor Landmarks
Indoor environments are characterized by at least a few turns
(at the end of corridors, into offices, classrooms, stairs, etc.).
Since the gyroscope offers reliable angular displacements, we
recognize the opportunity to use them as organic landmarks.
We design a special feature called the bending coefficient. Es-
sentially, the coefficient captures the notion of path curvature,
computed as the length of the perpendicular from the cen-
ter of a walking segment to the straight line joining the end-
points of the segment. We compute the bending coefficient
over a sliding window on the user’s walking path, and use
them as a separate feature. Later, when we cluster on bending
coefficient and WiFi together as features, similar turns within
a WiFi area gather in the same cluster. The turns in the clus-
ter could still be doors of adjacent classrooms in a corridor –
these turns may very well lie within the same WiFi area. To
avoid coalescing all these turns into the same landmark, Un-
Loc checks if the cluster is confined to within a 4m2 area; only
then is the cluster declared a landmark.

Magnetic landmarks are also derived through similar tech-
niques. So long as the magnetic signature is unique within
one WiFi area, and the sensed locations are spatially confined
within 4m2, we deem it as a magnetic OLM. Figure 15 shows
an anecdotal example where the magnetic field near our net-
working lab demonstrates a unique distortion.
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Figure 15: Magnetic signature near networking lab.

3.4 Simultaneous Localization and Mapping
UnLoc uses the SLMs and OLMs to reset dead reckoning error
and track the user. The improved dead-reckoned paths help
in refining the landmark locations because different paths of-
fer independently erroneous estimates of a specific landmark.
Combining these independent errors produces the refinement
(the intuition derived from law of large numbers, where the
sampled mean converges to the true mean for a large number
of samples). We combine the estimates of a landmark, say
Li, as follows. While the obvious approach would be to com-
pute the centroid, we actually take advantage of the observa-
tion that all estimated locations may not be equally incorrect.
Consider 2 users who arrive at Li from landmarks Lj and Lk,
respectively. If Lj is closer to Li than Lk, then the user that
walks from Lj is likely to have incurred less error. This is
because pure dead reckoning is known to accumulate error
over time. Thus, accounting for this confidence in landmark
estimates, UnLoc computes a weighted centroid. The result is
declared as the location of the landmark.

3.5 Points of Discussion
• While we assumed the knowledge of a floorplan, we can
relax that assumption now. Observe that in reality, we need
just one ground truth location of any seed landmark. This
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could be the location of the building’s entrance, staircase, el-
evator. Once we know the GPS coordinate of one SLM, the
rest of the SLMs and OLMs can be organically grown, using
this known coordinate as the origin. Importantly, the loca-
tion of this origin SLM – say the building’s entrance – needs
to be learnt only once when UnLoc bootstraps for the first
time. In the steady state, even if users do not know when
they are passing through the entrance, their locations will be-
come known once they encounter a landmark. The same is
true when a user enters through a different entrance of the
building, or turns on her phone at some time after she is in-
side the building. The localization service will activate once
they pass through the first landmark.

In this paper’s implementation, we extracted the GPS loca-
tion of the building entrance from Google Satellite View. Dur-
ing bootstrap, a user activated UnLoc when entering through
this entrance. Alternatively, the entrance location could have
been collected by other means, or even estimated from loca-
tions where GPS fixes are lost (after entering a building). We
firmly believe that obtaining the GPS coordinate of one SLM,
just one time, will not be difficult in real life.

• Activity based landmarks are feasible too – a busy cafe
may invariably have a queue, or visiting a restroom may
have a unique signature. These activities can very well be
landmarks as long as their patterns surface upon clustering.
Even temporary landmarks can be learnt (i.e., queue exists
between noon and 2:00pm only), and even unlearnt if the
queueing behavior disappears during, say, winter vacations.
Our current implementation has not explored these oppor-
tunities – we have only used signatures that are stable over
time.

• The early adopters of UnLoc will help with localizing
the OLMs and bring the system to convergence – is this
not war-driving? We argue that this is certainly not war-
driving because the early adopters behave naturally and do
not collect ground truth (since they do not need GPS). In
fact, they collect exactly the same sensor readings as all other
users. The only difference is that the early users may experi-
ence less localization accuracy (Figure 19). The process of
war-driving, on the contrary, is associated with the notion
of (ground truth) calibration, which naturally requires addi-
tional equipment.

The next section discusses the implementation, experiment
methodology, and performance of UnLoc.

4. EVALUATION

Prototype Implementation
UnLoc is implemented on Google NexusS phones using JAVA
as the programming platform. The phone samples the 4 sen-
sors (magnetometer, compass, and accelerometer at 24Hz;
gyroscope at highest permissible rate) and WiFi at 1Hz. Vari-
ous features derived from these measurements are sent to the
UnLoc server.7 The server side code is written using C# and
MATLAB, and implements the dead reckoning, clustering, and
landmark signature-matching algorithms. Whenever a new
7In a real-life deployment of UnLoc, communication to the
server may not be necessary. The landmarks of a building can
be downloaded a priori; clustering and landmark matching
algorithms can be executed locally on the phone.

landmark is detected from clustering, the server updates the
OLM list.

Methodology
We design real-life experiments with 3 different users in 3 dif-
ferent university buildings – (1) Computer Science (2) Engi-
neering, and (3) North Gate shopping mall. Approximately,
we covered 1750m2, 3000m2, and 4000m2 respectively, in
these buildings. Each user walked around arbitrarily in the
building for 1.5 hours, covering multiple floors; they carried
2 phones, one in the pocket and another in the hand with the
screen facing up. We made separate arrangements to collect
ground truth (recall that GPS is not available inside any of
these buildings). Briefly, we pasted markers on the grounds
at precisely known locations, such as the center of a class-
room door, the first step in a staircase, the entry-point to the
elevator, in front of a window, etc. Each of these markers had
a number on them; as a user walked through a marker, she
spoke out the number on the marker, and the phone recorded
it. By superimposing the map of the building on Google Earth,
and identifying the corresponding locations of the markers,
we extracted their GPS locations. This offered us ground truth
at these markers. Between two markers (separate by 5m on
average), we interpolated using step-count. Of course, UnLoc
did not rely on any of the ground truth markers to compute
its location. Thus, at any given time, the difference between
ground truth and the UnLoc-estimated location, is UnLoc’s in-
stantaneous localization error.

4.1 Evaluation Results
We intend to concentrate on the following questions:

• How many landmarks are detected in different buildings?
Are they well scattered? (Figure 16))

• Do real users encounter these landmarks (i.e., is the match-
ing between the sensor reading and established landmark
signatures, reliable)? (Figure 17)

• What is the localization accuracy of a user, in real-time, and
offline? (Figure 18, 19, 20)

SLM Detection Performance
Table 1 shows the confusion matrix for the detection of all
SLMs (using traces from 2 malls in Egypt). The matrix shows
that some SLMs are easier to detect than others due to their
unique patterns. This leads to zero false positive and negative
rates for the elevators and walking cases. However, even with
the difficult SLMs, the UnLoc’s template signatures can still
achieve a high accuracy, with an overall 0.2% false positive
and 1.1% false negative rates.

Detecting Organic Landmarks (OLMs)
Figure 16(a) shows the number of landmarks detected inside
different buildings. For the engineering building, the breakup
of the landmarks is: 9 magnetic, 8 turns, and 15 WiFi OLMs.
For the computer science building, the breakup is: 9 mag-
netic, 10 turns, and 10 WiFi OLMs. Perhaps more impor-
tantly, Figure 16(b) shows how these landmarks are quite
homogeneously scattered inside the buildings. We observe
that with these numbers of well-scattered landmarks, a user’s
dead reckoning error is not likely to grow excessively, in turn
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Table 1: Confusion matrix for classifying different seed landmarks
Elevator Stationary Escalator Walking Stairs FP FN Traces

Elevator 24 0 0 0 0 0% 0% 24
Stationary 0 31 1 0 0 0% 3.1% 32
Escalator 0 0 22 0 0 0.6% 0% 22
Walking 0 0 0 39 0 0% 0% 39
Stairs 0 0 0 1 52 0% 1.8% 53
Overall 0.2% 1.1% 170

helping landmark localization. This well matches our core in-
tuition and expectation.
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Figure 16: (a) Number of SLMs and OLMs located in
different buildings (b)Location of different types of OLMs
in the engineering building

Figure 17(a) reports the accuracy of the landmark locations,
as computed by UnLoc. Observe that aligned with our intu-
ition, the number of landmarks increase over time, as more
users explore the space (Figure 17(b)). Moreover, the accu-
racy of these landmarks also increase, since different paths
bring different independent estimates. In fact, our data sets
are limited in diversity of paths since volunteers could not
walk around into any rooms or auditoriums in these buildings
– many were research offices, faculty offices, or classrooms.
In reality, the diversity of different independent paths may be
expected to augment the accuracy.

Landmark Signature Matching
If landmark signatures fluctuate quickly over time, then OLMs
will be unstable. Thus, users may never encounter the estab-
lished OLMs because their signatures are changing faster than
they can be learnt. Furthermore, it is entirely possible that

users at a different location sense a signature that matches
a far-away landmark. In such a case, the user’s location will
be repositioned to the (highly erroneous) landmark. To verify
if such variations occur in our buildings, we collected sensor
readings on multiple days. We found sound consistency in the
signatures. This is not surprising because all our signatures
are designed to be stable, particularly WiFi and accelerome-
ter/gyroscope based turns. While the magnetic signatures can
change, in our cases we did not observe anything appreciable.

Nonetheless, recall that UnLoc embraces a conservative ap-
proach by using a low “similarity threshold" while declaring
a landmark. In other words, the signature of the landmark
should be very dissimilar with other signatures to qualify as
a landmark. This ensures that when a test user matches her
sensed readings with existing OLMs, the false positive (FP)
rate is low. Figure 17(c) quantifies false positives – evidently
FP is less than 1%. As a tradeoff for choosing very distinct sig-
natures, it is possible that a test user may not match it well.
Figure 17(c) shows that the matching accuracy is reasonably
high, although not perfect. We believe that this is an accept-
able tradeoff – given that the number of landmarks are high,
missing a few will affect performance much less than match-
ing to an incorrect landmark. In other words, UnLoc is in
favor of trading off matching accuracy to maintain low false
positives.

Of course, changes in the ambience – say relocation of major
electrical equipment to a different room, or deactivated WiFi
APs – will affect existing landmarks, and UnLoc will not be
able to match them. However, UnLoc will learn these changes
changes over time, both the disappearance of the landmark
from its original location, as well as the emergence of a land-
mark at a different location. So long as these changes are not
all at the same time, UnLoc should be able to remain resilient
to landmark churn. We leave the quantification of this claim
to future work.

Localization Performance
In offline localization, whenever a user encounters a land-
mark, UnLoc learns her errors, and therefore can track back
and partly correct her past trail. Online, real-time localization
does not offer this benefit. Figure 18(a) shows the compar-
ison of these two forms of localization – evidently, the ad-
vantage of offline is appreciable. This implies that for appli-
cations which do not need online tracking, localization error
can be within 1.15m on average, even with a few landmarks.

Beyond the bootstrapping phase, as UnLoc identifies several
organic landmarks, error correction opportunities will increase.
How much accuracy can we expect in steady state when many
OLMs have already been recognized? Figure 18(b) demon-
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strates the result; mean instantaneous localization error is
within 1.69m. However, the performance will only improve
over time as more OLMs are detected. Figure 19(a) quantifies
the intuition. As a user moves away from a landmark, her lo-
cation error grows and eventually gets reset at the next land-
mark. Initially, UnLoc only has a few landmarks and hence
the error between two landmarks is high. As more landmarks
are identified and added to the system, the error growth is
curbed frequently. We aggregate the error over time across
all the users walking on multiple routes, and present in Fig-
ure 19(b). The benefits of additional OLMs are evident.

The above results are from experiments across 3 different
buildings using several landmarks. It is difficult to predict
how many such landmarks exist in other buildings. Thus, it
is natural to ask if localization performance will get derailed if
only a few landmarks exist? Figure 20 presents location error
for varying landmarks. Even with 10 out of the 28 landmarks,
average instantaneous location error is within 1.9m. We ex-
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Figure 19: Localization error over time for (a) a single
user. (b) averaged over all users.

pect a few landmarks to be available in most buildings – when
in doubt, UnLoc could even turn on the microphone to ex-
pand to ambient acoustic signatures. While far more rigorous
experimentation is necessary (across more buildings, people,
phone platforms, and time), we believe the results from these
small scale tests are promising to justify moving forward.

Note on Performance Comparison
Table 2 shows a qualitative comparison of UnLoc with a num-
ber of other indoor localization schemes. The most relevant
scheme for comparison is EZ [23], which to the best of our
knowledge, was among the first to attempt calibration-free
localization. However, we believe that EZ’s reliance on “occa-
sional GPS fixes” in indoor environments could be problem-
atic. We believe UnLoc’s requirement of only a door location is
more dependable/scalable. Also, UnLoc is far less sensitive to
RF signal fluctuations; the data volume needed to bootstrap
is also less. Other schemes in Table 2 require war-driving or
special infrastructure; UnLoc is free of both.
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Table 2: Comparison with other Localization Systems
Name EZ SLAM Horus UnLoc
Accuracy 2− 7m ∼ 5m ∼ 1m 1− 2m
Pitfalls GPS

Lock?
Special
Sensors
(LIDAR,
Odometer.)

RF Sen-
sitivity

Door Lo-
cation

Overhead None None War-
driving

None

5. LIMITATIONS AND FUTURE WORK
• Heterogeneous Hardware: It is possible that the landmark
signatures will vary across smartphone platforms – UnLoc has
not been tested for this. However, if data gathered from
smartphones are indexed by the phone’s make and model,
it should be feasible to detect landmark signatures for each
distinct model (as we have, for the Android Nexus series).
Thus, in real-life, a phone would download landmark signa-
tures that are specific to its hardware, and run UnLoc for lo-
calization. In other words, UnLoc would extend to all plat-
forms from which initial sensor data has been gathered.

• Phone Orientation Effect: We have experimented with the
phones in realistic orientation (in pocket and in hand). Han-
dling arbitrary phone orientations and their effect on the re-
ported sensor values is an important direction for future re-
search. As gyroscopes are becoming more available on new
phones, they can be leveraged to map arbitrary orientation to
a specific frame of reference. Meanwhile, orientation-independent
features, such as the magnitude of the acceleration, should be
investigated.

• Energy Footprint: UnLoc avoids using sensors that have a
high energy footprint, e.g., light and sound. This is expected
to limit the energy consumed from sensing. Moreover, UnLoc
can incrementally turn on sensors, perhaps depending on the
density of landmarks available in the environment. For exam-
ple, if a wing of a building has numerous landmarks, UnLoc
could turn off the magnetometer, and use only the accelerom-
eter and compass based landmarks for localization. This pa-
per has not addressed such optimizations – these are part of
our ongoing work.

• Scalability Testing: A complete UnLoc system needs to be
tested over larger scale, in terms of the number of users and
data size. However, as with other crowd-sourcing based sys-
tems, it is difficult for us to deploy a large scale testbed. This

includes in part providing incentive systems for users to de-
ploy the system and experiment with it.

6. RELATED WORK
Our goal and vision intersect with a number of projects in
literature. In particular, the indoor localization literature is
vast, ranging from theoretical models to simulations to im-
plemented systems [1–9, 9–16]. In the interest of space, we
heavily sub-sample this literature, focussing on systems re-
lated to UnLoc.

Calibration-free Localization: A recent work called EZ [23]
was among the first to attempt indoor localization without
war-driving. Their key intuition is that overheard WiFi APs
and RSSI can together offer the user’s location (via a genetic
algorithm), provided that a mobile device occasionally gets
a GPS fix. While EZ demonstrates accuracies between 2 to
7m, the GPS locks inside a building can be erratic. Moreover,
the precise RF signal propagation may vary over time due to
environmental dynamism. UnLoc eliminates this reliance on
periodic GPS fixes, and only relies on a one-time global truth
information – e.g., the location of a door, or staircase, or ele-
vator. The entire system can bootstrap from this.

WiFi based techniques: Other RF based techniques [1, 3,
5] also inspire UnLoc. Place Lab [5] is a highly success-
ful project where signals from different WiFi and GSM base
stations are utilized for localization. A wireless map is cre-
ated by war-driving a region; the mobile device localizes itself
by comparing overheard APs/cell towers against the wireless
map. UCSD’s Active Campus project [6] adopts similar tech-
niques of localization, but assumes that the location of the
WiFi access points are known a priori. RADAR [1] also op-
erates on WiFi fingerprinting, and is capable of achieving up
to 5m accuracy in indoor settings. As a tradeoff to accuracy,
RADAR needs to carefully calibrate WiFi signal strengths at
many physical locations in the building. High resolution cali-
bration is time-consuming and may not scale over wide areas.
Some techniques have bypasses the calibration effort through
deployment of additional infrastructure, e.g., Cricket [10],
Lease [4], PAL [8], Pinpoint [15]. UnLoc is designed to be an
infrastructure-independent, calibration-free, system.

Dead-reckoning: Dead reckoning using inertial sensors is a
well-studied research area. However, typical sensors used in
such domains are expensive and high-quality ones – coping
with noisy smartphone sensors in indoor environments is far
less explored. The key problem is that dead-reckoning suf-
fers from the accumulation of error, and can grow cubically
even with foot mounted accelerometers [24]. To reduce such
error, periodic recalibration with the GPS has been used in
outdoor environments [2,25]. However, GPS is not available
indoors. UnLoc presents an option to replace GPS with indoor
landmarks; the ability to identify these landmarks in an unsu-
pervised way enables zero-calibration indoor localization.

Simultaneous Localization and Mapping (SLAM): A highly
popular and successful technique in robotics, called SLAM, al-
lows a robot to simultaneously discover landmarks and build
a map-representation of an indoor environment [26]. How-
ever, SLAM typically depends on using explicit environment
sensors, such as laser range finders and cameras. Moreover,
the rotation of the robot wheels offer a precise computation
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of displacement. Recently, WiFi-SLAM [27] proposed the us-
age of the WiFi signal strength for SLAM based on a Gaussian
Process Latent Variable Model (GP-LVM). However, the multi-
path propagation affects the accuracy of the model that cap-
tures the relation between the WiFi signal and distance. The
paper also assumes that motion between multiple WiFi sam-
ples can be accurately determined. UnLoc is certainly rem-
iniscent of SLAM, even inspired – however, it is completely
different. Unlike SLAM, UnLoc uses smartphone sensors to
compute the displacement and direction of users; the land-
marks are essentially ambient signatures or user-activities.
While ambient signatures and activity recognition have been
utilized in the past [14, 28], its applicability towards dead-
reckoning is, to the best of our knowledge, novel.

Sensor fusion: Multi-modal sensing has received strong in-
terests – [29] uses a body worn sensory board (MSB) for hu-
man activity recognition. UnLoc, however, is an early attempt
to apply activity recognition to indoor location tracking, using
cheap mobile phone sensors.

7. CONCLUSION
We observe that inherent properties of indoor environments
offer unique opportunities to perform localization. The core
approach draws from existing ideas in literature, and com-
bines them in an unconventional way. Essentially, mobile de-
vices are dead-reckoned using their sensor measurements, but
these same measurements are leveraged to detect unique en-
vironmental signatures within the building. These signatures
are used to correct the dead-reckoning error, which in turn
improves the location accuracy of these signatures – a recur-
sive procedure. Performance results suggest promise, moti-
vating us to pursue UnLoc to the point of real deployment.
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